Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(6): e10593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023694

RESUMO

Clostridioides difficile spores are considered as the major source responsible for the development of C. difficile infection (CDI), which is associated with an increased risk of death in patients and has become an important issue in infection control of nosocomial infections. Current treatment against CDI still relies on antibiotics, which also damage normal flora and increase the risk of CDI recurrence. Therefore, alternative therapies that are more effective against C. difficile bacteria and spores are urgently needed. Here, we designed an oxidation process using H2O2 containing PBS solution to generate Cl- and peroxide molecules that further process Ag and Au ions to form nanoboxes with Ag-Au peroxide coat covering Au shell and AgCl core (AgAu-based nanoboxes). The AgAu-based nanoboxes efficiently disrupted the membrane structure of bacteria/spores of C. difficile after 30-45 min exposure to the highly reactive Ag/Au peroxide surface of the nano structures. The Au-enclosed AgCl provided sustained suppression of the growth of 2 × 107 pathogenic Escherichia coli for up to 19 days. In a fecal bench ex vivo test and in vivo CDI murine model, biocompatibility and therapeutic efficacy of the AuAg nanoboxes to attenuate CDI was demonstrated by restoring the gut microbiota and colon mucosal structure. The treatment successfully rescued the CDI mice from death and prevented their recurrence mediated by vancomycin treatment. The significant outcomes indicated that the new peroxide-derived AgAu-based nanoboxes possess great potential for future translation into clinical application as a new alternative therapeutic strategy against CDI.

2.
Theranostics ; 13(1): 40-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593951

RESUMO

Immunotherapies are now emerging as an efficient anticancer therapeutic strategy. Cancer immunotherapy utilizes the host's immune system to fight against cancer cells and has gained increasing interest due to its durable efficacy and low toxicity compared to traditional antitumor treatments, such as chemotherapy and radiotherapy (RT). Although the combination of RT and immunotherapy has drawn extensive attention in the clinical setting, the overall response rates are still low. Therefore, strategies for further improvement are urgently needed. Nanotechnology has been used in cancer immunotherapy and RT to target not only cancer cells but also the tumor microenvironment (TME), thereby helping to generate a long-term immune response. Nanomaterials can be an effective delivery system and a strong autophagy inducer, with the ability to elevate autophagy to very high levels. Interestingly, autophagy could play a critical role in optimal immune function, mediating cell-extrinsic homeostatic effects through the regulation of danger signaling in neoplastic cells under immunogenic chemotherapy and/or RT. In this review, we summarize the preclinical and clinical development of the combination of immunotherapy and RT in cancer therapy and highlight the latest progress in nanotechnology for augmenting the anticancer effects of immunotherapy and RT. The underlying mechanisms of nanomaterial-triggered autophagy in tumor cells and the TME are discussed in depth. Finally, we suggest the implications of these three strategies combined together to achieve the goal of maximizing the therapeutic advantages of cancer therapy and show recent advances in biomarkers for tumor response in the evaluation of those therapies.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Imunoterapia , Autofagia , Microambiente Tumoral
3.
J Nanobiotechnology ; 20(1): 373, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953837

RESUMO

The escape of bladder cancer from immunosurveillance causes monotherapy to exhibit poor efficacy; therefore, designing a multifunctional nanoparticle that boosts programmed cell death and immunoactivation has potential as a treatment strategy. Herein, we developed a facile one-pot coprecipitation reaction to fabricate cluster-structured nanoparticles (CNPs) assembled from Fe3O4 and iron chlorophyll (Chl/Fe) photosensitizers. This nanoassembled CNP, as a multifunctional theranostic agent, could perform red-NIR fluorescence and change the redox balance by the photoinduction of reactive oxygen species (ROS) and attenuate iron-mediated lipid peroxidation by the induction of a Fenton-like reaction. The intravesical instillation of Fe3O4@Chl/Fe CNPs modified with 4-carboxyphenylboronic acid (CPBA) may target the BC wall through glycoproteins in the BC cavity, allowing local killing of cancer cells by photodynamic therapy (PDT)-induced singlet oxygen and causing chemodynamic therapy (CDT)-mediated ferroptosis. An interesting possibility is reprogramming of the tumor microenvironment from immunosuppressive to immunostimulatory after PDT-CDT treatment, which was demonstrated by the reduction of PD-L1 (lower "off" signal to the effector immune cells), IDO-1, TGF-ß, and M2-like macrophages and the induction of CD8+ T cells on BC sections. Moreover, the intravesical instillation of Fe3O4@Chl/Fe CNPs may enhance the large-area distribution on the BC wall, improving antitumor efficacy and increasing survival rates from 0 to 91.7%. Our theranostic CNPs not only demonstrated combined PDT-CDT-induced cytotoxicity, ROS production, and ferroptosis to facilitate treatment efficacy but also opened up new horizons for eliminating the immunosuppressive effect by simultaneous PDT-CDT.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Fotoquimioterapia , Neoplasias da Bexiga Urinária , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Clorofila , Compostos Férricos , Humanos , Imunização , Imunoterapia , Ferro , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico
4.
J Nanobiotechnology ; 20(1): 311, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794602

RESUMO

The development of optical organic nanoparticles (NPs) is desirable and widely studied. However, most organic dyes are water-insoluble such that the derivatization and modification of these dyes are difficult. Herein, we demonstrated a simple platform for the fabrication of organic NPs designed with emissive properties by loading ten different organic dyes (molar masses of 479.1-1081.7 g/mol) into water-soluble polymer nanosponges composed of poly(styrene-alt-maleic acid) (PSMA). The result showed a substantial improvement over the loading of commercial dyes (3.7-50% loading) while preventing their spontaneous aggregation in aqueous solutions. This packaging strategy includes our newly synthesized organic dyes (> 85% loading) designed for OPVs (242), DSSCs (YI-1, YI-3, YI-8), and OLEDs (ADF-1-3, and DTDPTID) applications. These low-cytotoxicity organic NPs exhibited tunable fluorescence from visible to near-infrared (NIR) emission for cellular imaging and biological tracking in vivo. Moreover, PSMA NPs loaded with designed NIR-dyes were fabricated, and photodynamic therapy with these dye-loaded PSMA NPs for the photolysis of cancer cells was achieved when coupled with 808 nm laser excitation. Indeed, our work demonstrates a facile approach for increasing the biocompatibility and stability of organic dyes by loading them into water-soluble polymer-based carriers, providing a new perspective of organic optoelectronic materials in biomedical theranostic applications.


Assuntos
Nanopartículas , Fotoquimioterapia , Corantes , Polímeros , Água
5.
ACS Appl Mater Interfaces ; 14(21): 24144-24159, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35579575

RESUMO

Lung cancer is considered among the deadliest cancers with a poor prognosis. Au@PG nanoparticles (NPs) are gold (Au)-based NPs featuring a polyaniline-based glyco structure (PG) generated from the polymerization of ortho-nitrophenyl-ß-d-galactopyranoside (ONPG) with promising M1 macrophage polarization activity, resulting in tumor remodeling and from a cold to a hot microenvironment, which promotes the cytotoxic T cell response and tumor inhibition. The combination of Au@PG NPs and anti-programmed cell death protein 1 (PD-1) therapy improved tumor inhibition and immunosuppression, accompanied by the secretion of immunogenic cytokines. A one-pot synthetic method was developed to achieve glyco-condensation during the formation of Au@PG NPs, which induced macrophage polarization more efficiently than Au@glucose, Au@mannose, and Au@galactose NPs. The switch from M2 to M1 macrophages was dependent on NP size, with smaller Au@PG NPs performing better than larger ones, with effectiveness ranked as follows: 32.2 nm ≈ 29.8 nm < 26.4 nm < 18.3 nm. Cellular uptake by endocytosis induced size-dependent endoplasmic reticulum (ER) stress, which resulted in the activation of spleen tyrosine kinase (SYK), leading to immune modulations and macrophage polarization. Our results suggested the promising potential of Au@PG NPs in lung cancer immunotherapy.


Assuntos
Neoplasias Pulmonares , Nanopartículas Metálicas , Nanopartículas , Compostos de Anilina , Ouro/química , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas/química , Microambiente Tumoral
6.
Pharmaceutics ; 14(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35056996

RESUMO

Accumulated studies indicate that zero-valent iron (ZVI) nanoparticles demonstrate endogenous cancer-selective cytotoxicity, without any external electric field, lights, or energy, while sparing healthy non-cancerous cells in vitro and in vivo. The anti-cancer activity of ZVI-based nanoparticles was anti-proportional to the oxidative status of the materials, which indicates that the elemental iron is crucial for the observed cancer selectivity. In this thematic article, distinctive endogenous anti-cancer mechanisms of ZVI-related nanomaterials at the cellular and molecular levels are reviewed, including the related gene modulating profile in vitro and in vivo. From a material science perspective, the underlying mechanisms are also analyzed. In summary, ZVI-based nanomaterials demonstrated prominent potential in precision medicine to modulate both programmed cell death of cancer cells, as well as the tumor microenvironment. We believe that this will inspire advanced anti-cancer therapy in the future.

7.
ACS Appl Mater Interfaces ; 13(44): 52295-52307, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34706531

RESUMO

Successful synthesis of glyconanoparticles has attracted much attention due to their various biointeractive capabilities, but it is still a challenge to understand different single-cell responses to exogenous particles among cell populations. Herein, we designed polyaniline-containing galactosylated gold nanoparticles (Au@PGlyco NPs) via in situ polymerization of ortho-nitrophenyl-ß-galactoside assisted by Au nucleation. The nanogold-carrying polyaniline block produced electromagnetic enhancement in surface-enhanced Raman scattering (SERS). The underlying polymerization mechanism of ortho-nitrophenyl compounds via the formation of Au nanoparticles was investigated. Depending on how the galactoside moiety reacted with ß-galactosidase derived from bacteria, the Au@PGlyco NPs-mediated SERS biosensor could detect low amounts of bacteria (∼1 × 102 CFU/mL). In addition, a high accumulation of Au@PGlyco NPs mediated the immune response of tumor-associated M2 macrophages to the immunogenic M1 macrophage transition, which was elicited by reactive oxygen levels biostimulation using single-cell SERS-combined fluorescence imaging. Our study suggested that Au@PGlyco NPs may serve as a biosensing platform with the labeling capacity on galactose-binding receptors expressed cell and immune regulation.

8.
Theranostics ; 11(14): 7072-7091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093872

RESUMO

Simultaneous targeting of both the tumor microenvironment and cancer cells by a single nanomedicine has not been reported to date. Here, we report the dual properties of zero-valent-iron nanoparticle (ZVI-NP) to induce cancer-specific cytotoxicity and anti-cancer immunity. Methods: Cancer-specific cytotoxicity induced by ZVI-NP was determined by MTT assay. Mitochondria functional assay, immunofluorescence staining, Western blot, RT-qPCR, and ChIP-qPCR assays were used to dissect the mechanism underlying ZVI-NP-induced ferroptotic cancer cell death. The therapeutic potential of ZVI-NP was evaluated in immunocompetent mice and humanized mice. Immune cell profiles of allografts and ex vivo cultured immune cells were examined by flow cytometry analysis, RT-qPCR assay, and immunofluorescence. Results: ZVI-NP caused mitochondria dysfunction, intracellular oxidative stress, and lipid peroxidation, leading to ferroptotic death of lung cancer cells. Degradation of NRF2 by GSK3/ß-TrCP through AMPK/mTOR activation was enhanced in such cancer-specific ferroptosis. In addition, ZVI-NP attenuated self-renewal ability of cancer and downregulated angiogenesis-related genes. Importantly, ZVI-NP augmented anti-tumor immunity by shifting pro-tumor M2 macrophages to anti-tumor M1, decreasing the population of regulatory T cells, downregulating PD-1 and CTLA4 in CD8+ T cells to potentiate their cytolytic activity against cancer cells, while attenuating PD-L1 expression in cancer cells in vitro and in tumor-bearing immunocompetent mice. In particular, ZVI-NPs preferentially accumulated in tumor and lung tissues, leading to prominent suppression of tumor growth and metastasis. Conclusions: This dual-functional nanomedicine established an effective strategy to synergistically induce ferroptotic cancer cell death and reprogram the immunosuppressive microenvironment, which highlights the potential of ZVI-NP as an advanced integrated anti-cancer strategy.


Assuntos
Ferroptose/efeitos dos fármacos , Ferro/farmacologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/química , Fator 2 Relacionado a NF-E2/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Aloenxertos , Animais , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Imunoprecipitação da Cromatina , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Ferro/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/imunologia
9.
J Mater Chem B ; 8(18): 4122-4131, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32267258

RESUMO

In this study, we demonstrated that zero-valent iron (ZVI), which is widely used to remediate environmental contamination through the production of high-energy reactive oxygen species (ROS), exhibited differential cytotoxicity in cancerous cells and nonmalignant cells. Nanoparticles (NPs) with different shells exhibited distinct potencies against cancerous cells, which depended on their iron-to-oxygen ratios. Silver-coated ZVI NPs (ZVI@Ag) had the highest potency among synthesized ZVI NPs, and they simultaneously exhibited adequate biocompatibility with nonmalignant keratinocytes. The assessment of the intracellular dynamics of iron species revealed that the uptake of ZVI@Ag was similar between cancerous cells and nonmalignant cells during the first 2 h; however, only cancerous cells rapidly converted NPs into iron ions and generated large amounts of intracellular ROS, which was followed by apoptosis and autophagy induction. The aforementioned processes were prevented in the presence of iron ion chelators or by preoxidizing NPs before administration. Neutralization of lysosomal pH effectively reduced ZVI@Ag NP-induced programmed cell death. In the xenograft mouse model, cancer growth was significantly inhibited by a single dose of systematically administered NPs without significant weight loss in animals.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ferro/farmacologia , Lisossomos/efeitos dos fármacos , Nanopartículas/química , Prata/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ferro/química , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Relação Estrutura-Atividade , Propriedades de Superfície , Células Tumorais Cultivadas
10.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235610

RESUMO

Nanotechnology has rapidly promoted the development of a new generation of industrial and commercial products; however, it has also raised some concerns about human health and safety. To evaluate the toxicity of the great diversity of nanomaterials (NMs) in the traditional manner, a tremendous number of safety assessments and a very large number of animals would be required. For this reason, it is necessary to consider the use of alternative testing strategies or methods that reduce, refine, or replace (3Rs) the use of animals for assessing the toxicity of NMs. Autophagy is considered an early indicator of NM interactions with cells and has been recently recognized as an important form of cell death in nanoparticle-induced toxicity. Impairment of autophagy is related to the accelerated pathogenesis of diseases. By using mechanism-based high-throughput screening in vitro, we can predict the NMs that may lead to the generation of disease outcomes in vivo. Thus, a tiered testing strategy is suggested that includes a set of standardized assays in relevant human cell lines followed by critical validation studies carried out in animals or whole organism models such as C. elegans (Caenorhabditis elegans), zebrafish (Danio rerio), and Drosophila (Drosophila melanogaster)for improved screening of NM safety. A thorough understanding of the mechanisms by which NMs perturb biological systems, including autophagy induction, is critical for a more comprehensive elucidation of nanotoxicity. A more profound understanding of toxicity mechanisms will also facilitate the development of prevention and intervention policies against adverse outcomes induced by NMs. The development of a tiered testing strategy for NM hazard assessment not only promotes a more widespread adoption of non-rodent or 3R principles but also makes nanotoxicology testing more ethical, relevant, and cost- and time-efficient.


Assuntos
Autofagia , Nanoestruturas/toxicidade , Testes de Toxicidade/métodos , Animais , Autofagia/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos
11.
Int J Mol Sci ; 20(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487938

RESUMO

To evaluate the iron ion release profile of zero-valent iron (ZVI)-based nanoparticles (NPs) and their relationship with lysosomes in cancer cells, silica and mesoporous silica-coated ZVI NPs (denoted as ZVI@SiO2 and ZVI@mSiO2) were synthesized and characterized for the following study of cytotoxicity, intracellular iron ion release, and their underlying mechanisms. ZVI@mSiO2 NPs showed higher cytotoxicity than ZVI@SiO2 NPs in the OEC-M1 oral cancer cell line. In addition, internalized ZVI@mSiO2 NPs deformed into hollow and void structures within the cells after a 24-h treatment, but ZVI@SiO2 NPs remained intact after internalization. The intracellular iron ion release profile was also accordant with the structural deformation of ZVI@mSiO2 NPs. Burst iron ion release occurred in ZVI@mSiO2-treated cells within an hour with increased lysosome membrane permeability, which induced massive reactive oxygen species generation followed by necrotic and apoptotic cell death. Furthermore, inhibition of endosome-lysosome system acidification successfully compromised burst iron ion release, thereby reversing the cell fate. An in vivo test also showed a promising anticancer effect of ZVI@mSiO2 NPs without significant weight loss. In conclusion, we demonstrated the anticancer property of ZVI@mSiO2 NPs as well as the iron ion release profile in time course within cells, which is highly associated with the surface coating of ZVI NPs and lysosomal acidification.


Assuntos
Ferro/uso terapêutico , Nanopartículas Metálicas/efeitos adversos , Neoplasias Experimentais/tratamento farmacológico , Animais , Apoptose , Linhagem Celular Tumoral , Células Cultivadas , Liberação Controlada de Fármacos , Humanos , Ferro/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química
12.
Materials (Basel) ; 11(12)2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30563014

RESUMO

Finding a cancer-selective drug that avoids damaging healthy cells and organs is a holy grail in medical research. In our previous studies, gold-coated iron (Fe@Au) nanoparticles showed cancer selective anti-cancer properties in vitro and in vivo but were found to gradually lose that activity with storage or "ageing." To determine the reasons for this diminished anti-cancer activity, we examined Fe@Au nanoparticles at different preparation and storage stages by means of transmission electron microscopy combined with and energy-dispersive X-ray spectroscopy, along with X-ray diffraction analysis and cell viability tests. We found that dried and reconstituted Fe@Au nanoparticles, or Fe@Au nanoparticles within cells, decompose into irregular fragments of γ-F2O3 and agglomerated gold clumps. These changes cause the loss of the particles' anti-cancer effects. However, we identified that the anti-cancer properties of Fe@Au nanoparticles can be well preserved under argon or, better still, liquid nitrogen storage for six months and at least one year, respectively.

13.
Sci Rep ; 7(1): 8124, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811642

RESUMO

Clinical management of Clostridium difficile infection is still far from satisfactory as bacterial spores are resistant to many chemical agents and physical treatments. Certain types of nanoparticles have been demonstrated to exhibit anti-microbial efficacy even in multi-drug resistance bacteria. However, most of these studies failed to show biocompatibility to the mammalian host cells and no study has revealed in vivo efficacy in C. difficile infection animal models. The spores treated with 500 µg/mL Fe3-δO4 nanoparticles for 20 minutes, 64% of the spores were inhibited from transforming into vegetative cells, which was close to the results of the sodium hypochlorite-treated positive control. By cryo-electron micro-tomography, we demonstrated that Fe3-δO4 nanoparticles bind on spore surfaces and reduce the dipicolinic acid (DPA) released by the spores. In a C. difficile infection animal model, the inflammatory level triple decreased in mice with colonic C. difficile spores treated with Fe3-δO4 nanoparticles. Histopathological analysis showed a decreased intense neutrophil accumulation in the colon tissue of the Fe3-δO4 nanoparticle-treated mice. Fe3-δO4 nanoparticles, which had no influence on gut microbiota and apparent side effects in vivo, were efficacious inhibitors of C. difficile spore germination by attacking its surface and might become clinically feasible for prophylaxis and therapy.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Compostos Férricos/química , Inflamação/microbiologia , Nanopartículas/química , Esporos Bacterianos/fisiologia , Animais , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/prevenção & controle , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Compostos Férricos/administração & dosagem , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Inflamação/prevenção & controle , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Esporos Bacterianos/efeitos dos fármacos
14.
Int J Cancer ; 135(12): 2760-9, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24771612

RESUMO

Chemoresistance is a major challenge in cancer therapy. Cisplatin is commonly used for chemotherapy in patients with head-and-neck cancer (HNC), but it increases control of the disease by only 10-15%. Downregulation of proapoptotic pathways is a key determinant for chemoresistance in which gelsolin (GSN) is critically involved. We analyzed the association between GSN expression and cisplatin resistance in HNC cell lines, animals with HNC and cancer tissue samples from 58 cisplatin-treated patients with HNC. GSN expression levels were positively associated with chemoresistance in vitro and in vivo. Cisplatin-induced GSN downregulation was associated with the cleavage of GSN and the promotion of apoptosis. GSN silencing facilitated cisplatin-induced apoptosis in chemoresistant cells. In contrast, intact gelsolin was prosurvival in the presence of cisplatin by interacting with X-linked inhibitor of apoptosis protein (XIAP). In chemosensitive cells, cisplatin suppressed GSN-XIAP interaction, promoted translocation of XIAP from the perinuclear region to the nucleus and induced apoptosis. In chemoresistant cells, GSN was highly expressed, and cisplatin had no significant effect on GSN-XIAP interaction and apoptosis. We conclude that GSN is important for chemoresistance in HNC and may be an appropriate therapeutic target in chemoresistant cancers.


Assuntos
Cisplatino/uso terapêutico , Gelsolina/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Antineoplásicos/uso terapêutico , Apoptose , Caspase 3/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inativação Gênica , Humanos , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos SCID , Recidiva Local de Neoplasia , Fenótipo , Técnicas do Sistema de Duplo-Híbrido , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Nanomedicine ; 8: 3321-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039416

RESUMO

Previously, iron core-gold shell nanoparticles (Fe@Au) have been shown to possess cancer-preferential cytotoxicity in oral and colorectal cancer (CRC) cells. However, CRC cell lines are less sensitive to Fe@Au treatment when compared with oral cancer cell lines. In this research, Fe@Au are found to decrease the cell viability of CRC cell lines, including Caco-2, HT-29, and SW480, through growth inhibition rather than the induction of cell death. The cytotoxicity induced by Fe@Au in CRC cells uses different subcellular pathways to the mitochondria-mediated autophagy found in Fe@Au-treated oral cancer cells, OECM1. Interestingly, the Caco-2 cell line shows a similar response to OECM1 cells and is thus more sensitive to Fe@Au treatment than the other CRC cell lines studied. We have investigated the underlying cell resistance mechanisms of Fe@Au-treated CRC cells. The resistance of CRC cells to Fe@Au does not result from the total amount of Fe@Au internalized. Instead, the different amounts of Fe and Au internalized appear to determine the different response to treatment with Fe-only nanoparticles in Fe@Au-resistant CRC cells compared with the Fe@Au-sensitive OECM1 cells. The only moderately cytotoxic effect of Fe@Au nanoparticles on CRC cells, when compared to the highly sensitive OECM1 cells, appears to arise from the CRC cells' relative insensitivity to Fe, as is demonstrated by our Fe-only treatments. This is a surprising outcome, given that Fe has thus far been considered to be the "active" component of Fe@Au nanoparticles. Instead, we have found that the Au coatings, previously considered only as a passivating coating to protect the Fe cores from oxidation, significantly enhance the cytotoxicity of Fe@Au in certain CRC cells. Therefore, we conclude that both the Fe and Au in these core-shell nanoparticles are essential for the anticancer properties observed in CRC cells.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Ouro/uso terapêutico , Ferro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/ultraestrutura , Apoptose/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Humanos , Tamanho da Partícula
16.
Biomaterials ; 32(20): 4565-73, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21458061

RESUMO

Nanoparticles with an iron core and gold shell (denoted "Fe@AuÓ") have been reported to limit cancer-cell proliferation and therefore have been proposed as a potential anti-cancer agent. However, the underlying mechanisms are still unknown. In this study, we used flow cytometry, confocal fluorescence microscopy, and transmission electron microscopy to analyse the morphological and functional alterations of mitochondria in cancerous cells and healthy cells when treated with Fe@Au. It was found that Fe@Au caused an irreversible membrane-potential loss in the mitochondria of cancer cells, but only a transitory decrease in membrane potential in healthy control cells. Production of reactive oxygen species (ROS) was observed; however, additions of common ROS scavengers were unable to protect cancerous cells from the Fe@Au-induced cytotoxicity. Furthermore, iron elements, before oxidation, triggered mitochondria-mediated autophagy was shown to be the key factor responsible for the differential cytotoxicity observed between cancerous and healthy cells.


Assuntos
Autofagia/fisiologia , Ouro , Ferro , Nanopartículas Metálicas , Mitocôndrias/metabolismo , Neoplasias Bucais/tratamento farmacológico , Animais , Células Cultivadas , Ouro/química , Ouro/farmacologia , Ouro/uso terapêutico , Humanos , Ferro/química , Ferro/farmacologia , Ferro/uso terapêutico , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias Bucais/patologia , Consumo de Oxigênio , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...